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ABSTRACT

Knowledge of the beam profiles is of critical importance for interpreting data from cosmic
microwave background experiments. In this paper, we present the characterization of the in-
flight optical response of the WMAP satellite. The main beam intensities have been mapped
to

� −30 dB of their peak values by observing Jupiter with the satellite in the same observing
mode as for CMB observations. The beam patterns closely follow the pre-launch expectations.
The full width at half maximum is a function of frequency and ranges from 0 � � 82 at 23 GHz
to 0 � � 21 at 94 GHz; however, the beams are not Gaussian. We present: (a) the beam patterns
for all ten differential radiometers and show that the patterns are substantially independent of
polarization in all but the 23 GHz channel; (b) the effective symmetrized beam patterns that
result from WMAP’s compound spin observing pattern; (c) the effective window functions for
all radiometers and the formalism for propagating the window function uncertainty; and (d) the
conversion factor from point source flux to antenna temperature. A summary of the systematic
uncertainties, which currently dominate our knowledge of the beams, is also presented. The
constancy of Jupiter’s temperature within a frequency band is an essential check of the optical
system. The tests enable us to report a calibration of Jupiter to 1-3% accuracy relative to the
CMB dipole.
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1. Introduction

The primary goal of the WMAP satellite (Bennett et al. 2003c), now in orbit, is to make high-fidelity
polarization-sensitive maps of the full sky in five frequency bands between 20 and 100 GHz. With these
maps we characterize the properties of the cosmic microwave background (CMB) anisotropy and Galactic
and extragalactic emission on angular scales ranging from the effective beam size, � 0 � � 21, to the full sky
(Bennett et al. 2003b). WMAP comprises ten dual-polarization differential microwave radiometers (Jarosik
et al. 2003a) fed by two back-to-back shaped offset Gregorian telescopes (Page et al. 2003).

Knowledge of the beam profiles is of critical importance for interpreting data from CMB experiments.
In algorithms for recovering the CMB angular power spectrum from a map, the output angular power spec-
trum is divided by the window function to reveal the intrinsic angular power spectrum of the sky. Thus, the
main beam and its transform (or transfer function) directly affect cosmological analyses. Typically, the beam
must be mapped to less than −30 dB of the peak to achieve 1% accuracy on the angular power spectrum.

The WMAP calibration is done entirely with the CMB dipole, which fills the main lobes and side-
lobes. Consequently, the angular spectrum is referenced to a multipole moment of

�
= 1. The beam profile,

discussed here, and electronic transfer function (Jarosik et al. 2003b) determine the ratio of the window
function at high

�
to that at

�
= 1. For most other CMB experiments, insufficient knowledge of the beams

affects both the calibration and window function as discussed, for example, in Miller et al. (2002).

Although it is traditional, and often acceptable, to parametrize beams with a single one or two-dimensional
Gaussian form, such an approximation is not useful for WMAP. This is because at the level to which the
beams must be characterized, they are intrinsically non-Gaussian. The WMAP beams can, however, be
treated as azimuthally symmetric because each pixel is observed with multiple orientations of the spacecraft.
The symmetric beam approximation is made for the first data release, avoiding many of the complications
associated with asymmetric beams (Cheng et al. 1994; Netterfield et al. 1997; Wu et al. 2001; Souradeep &
Ratra 2001).

In the following we discuss how the beams are parametrized, how the window functions are computed,
and how the uncertainties in the window functions are propagated through to the CMB angular power spec-
trum. The notation is summarized in Table 1. The sidelobe response is discussed in a companion paper
(Barnes et al. 2003).

2. Determination of the Beam Profiles.

The beam profiles are determined from observations of Jupiter while the observatory is in its nominal
CMB observation mode. Jupiter is observed during two approximately 45 day intervals each year. The first
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period11 occurred from 2001 October 2 until 2001 November 24 when Jupiter was at l = 193 � � 8, b = 12 � � 5,
and a second period from 2002 February 8 to 2002 April 2 with Jupiter at l = 189 � � 6, b = 5 � � 9, close to
the Galactic plane and SNR IC443. The data are analyzed in the same manner as the CMB data in terms
of pre-whitening, offset subtraction, and calibration (Hinshaw et al. 2003). The Jupiter observations are
excluded from the CMB sky maps. In turn, the CMB sky maps are used to remove the background sky
signal underlying the Jupiter maps.

Because the distance to Jupiter changes substantially over the observing period, all beam maps are
referenced to a distance of dJ = 5 � 2 AU and a solid angle of � re f

J = 2 � 481 � 10−8 sr (Griffin et al. 1986).
Jupiter is effectively a point source with temperature TJ = ��� T m

J d ����� re f
J = T m

J � B ��� re f
J , where T m

J is the
amplitude observed by WMAP and � B is the measured main beam solid angle. A map of Jupiter is expressed
as

T (n) = TJ � re f
J B(n) (1)

where n is a unit direction vector and B is the main beam pattern described below. The maximum of T (n)
corresponds to T m

J . The intrinsic short term variability in Jupiter’s flux is expected to be less than 0 � 02 Jy at
20 GHz assuming that the fluctuations scale with the nonthermal radio emission (Bolton et al. 2002). The
measured flux is � 60 Jy in K band (23 GHz) leading to an expected variation of � 0 � 1%. Our measurements
limit any variability to less than 2%.

Figure 1 shows the “raw” beams from both telescopes. A number of features are immediately evident.
As expected, all beams are asymmetric and the V and W band beams have significant substructure at the
−10 to −20 dB level. The asymmetry results because the feeds (Barnes et al. 2002) are far from the primary
focus. The substructure arises because the primary mirror distorts upon cooling with an rms deviation of	

z = 0 � 024 cm and correlation length of lc � 10 cm (Page et al. 2003).

The Jupiter data are analyzed both as maps binned with 2 � 4 
�� 2 � 4 
 pixels and as time ordered data
(TOD). These data products are analyzed separately. In addition, full flight simulations are used to test the
software.

Figure 2 shows the beams in profile after symmetrization. In the Jupiter map analysis, the symmetriza-
tion procedure consists of smoothly interpolating the beam to 0 � 015 
�� 0 � 015 
 pixels with a 2-D spline and
then azimuthally averaging in rings of width 1 � 2 
 . Due to noise, the maximum value in a map is often not on
the best symmetry axis, though it is generally within one pixel of it. The symmetrized beam has the same
solid angle as the raw beam to within 0 � 3%. The normalized symmetrized beam is called bS. In the TOD
analysis, the data are fit to a series of Hermite functions (§3) according to their angular separation from a
predetermined centroid. The best centroid is determined iteratively. The analysis includes the effects of the
sampling integration and pre-whitening procedure (Hinshaw et al. 2003) but does not have the intermediate
step of mapmaking and thus is independent of the 2 � 4 
 pixelization. There are low signal to noise modes in
the Jupiter maps that do not affect the window functions and to which the Hermite method is insensitive.
Generally, the Hermite beams are used for

�
-space quantities, such as the window function, and the Jupiter

11We use the JPL planetary ephemerides available from http://ssd.jpl.nasa.gov/eph_info.html
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maps are used for real space calculations.

2.1. Beam solid angles and uncertainties

Linking the calibration of observations of the CMB at
�

= 1 to compact sources at
�

� 1000 requires
knowledge of the beam profile over a large range of angular scales. The width in

�
-space can be characterized

by the total beam solid angle, � A = � bT d � , where bT is the full sky beam profile normalized to unity on
the boresight. In our analysis, the beam is divided into two parts: � A = � B + � S where � B is the main beam
solid angle and � S is the portion associated with the sidelobes. Ideally � S = 0 but this is not an appropriate
approximation for WMAP, especially in K band. Generally, � B is found by normalizing a map to the best
fit peak value, and then integrating out to some radius. For WMAP, � B does not reach a stable value as
the integration radius is increased because of the imperfect knowledge of the background. This may be
seen with the following estimate. The net statistical uncertainty in the WMAP data in a patch of radius
3deg is � 6 � K (the noise is � 0 � 85 mK in each 2 � 4 
 � 2 � 4 
 pixel). If the background could be removed
to this level, the resulting solid angle temperature product would be T � = 5 � 10−2 � K sr. By comparison,
T m

J � B � 4 � K sr in W-band (T m
J � 200 mK and � B � 2 � 10−5 sr ). Given that both the region near Jupiter

and the region being compared to must be known to this level and that T � grows with radius, deviations of
a few percent are not unexpected. As the signal to noise improves throughout the mission, this limitation
will be alleviated.

In order to derive a consistent set of solid angles, we define a cutoff radius, � Rc, out to which the solid
angle integration is performed. As shown in Page et al. (2003), the global properties of the beam may be
modeled by a core plus a “Ruze pattern” (Ruze 1966) that is a function of the surface correlation length
and rms roughness. We assume that lc is unchanged from the pre-launch measurements at 70 K. (The in-
flight temperatures of the primaries are 73 K and 68 K for the central and top thermometers for both A
and B sides.) Table 2 shows how the main beam forward gain, 4 � ��� B, is reduced by the sampling and
surface deformations. The agreement between the measurements and the expectations is evidence that the
main beam effects have been accounted for and that the in-flight 	 z is consistent with the ground-based
measurement. Physical models of the optics, in §2.5, give further evidence for this.

We define � Rc as the radius that contains at least 99.8% of the modeled main beam solid angle. These
values are 2 � � 8, 2 � � 5, 2 � � 2, 1 � � 8, 1 � � 5 respectively for K through W bands and agree with values derived from
the physical model of the optics. Figure 2 shows examples of the K- and W-band beams and their Ruze
patterns. The solid angles resulting from the integrals over the Jupiter maps with a cutoff radius of � Rc are
given in Table 3.

The uncertainty in the main beam solid angle primarily affects the determination of the flux from point
sources and spatially localized features in real space. Solid angle uncertainties affect the angular spectrum
through the width of the

�
-space passband as discussed in §3. The uncertainty is assessed three ways:

1. The solid angles are determined from simulations that have been processed in the same way the
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flight data are computed. The rms deviation between the input and recovered solid angle for 20
measurements (10 on the A side and 10 on the B side) is 1.1%. The formal statistical uncertainty is
between 0.7% and 1% depending on band.

2. The scatter in the derived temperature of Jupiter is found for all detector/reflector combinations. Each
feed is mapped in two polarizations by two detectors during two seasons for a total of eight mea-
surements. The statistical uncertainty of the mean of the eight measurements is 2.6% in K band and

� 1 � 1% in Ka through W bands. The K beam result has a relatively low amplitude, � 13 � 5 mK, and
is wide, making it difficult to measure. It is also the most susceptible to the effective frequency and to
incompletely subtracted Galactic contamination.

The systematic uncertainty is also determined from the Jupiter maps. The uncertainty on Jupiter’s
measured amplitude is � 0 � 5% and is always subdominant to the uncertainty in the solid angle. We
assume that Jupiter’s temperature is the same for all measurements within a band. (The intraband
effective frequencies are close enough to be insensitive to Jupiter’s spectrum.) The uncertainty of � B

is increased until � 2 ��� = 1 for fits to Jupiter’s temperature within a band. This results in uncertainties
of 2.6%, 1.2%, 1.2%, 1.1%, & 2.1% per DA12 per side for K through W bands.

3. The solid angles are recomputed by direct integration after increasing � Rc to 3 � � 7, 3 � � 3, 2 � � 9, 2 � � 4,
2 � � 0 respectively for K through W bands. For the 10 DAs on both A and B sides, the rms deviation
between the original � � � Rc and recomputed solid angles is 0.8% with no clear trend in the sign of
the deviation except in W-band. In W-band, the solid angles with the increased � Rc are systematically
larger by 0.8% on average, suggesting a potential bias. The most likely explanation is that the shape
of the surface distortions is not Gaussian as assumed for the Ruze model. From Figure 2, one sees
that the level of the potential contribution is at � −35 dB, just beyond � Rc. We term this region the
beam pedestal. To account for the bias, the W-band solid angles are increased by 0.8% over the
nominally computed value and assigned an additional uncertainty of 0.4%, added in quadrature. The
net uncertainty is still 2.1%. This increase is accounted for in Table 1 and discussed in the context of
the window functions in §3.2. For the year-one data release, we treat this as a systematic deviation
from our model and account for it in the analysis. Future analyses, with more data, will treat this
effect with a more comprehensive beam model (§2.5) and will determine the source of the pedestal in
the beam.

The uncertainties in the solid angles used throughout the analysis encompass the systematic effects in
items 2 and 3. These uncertainties should be interpreted as “1 	 .”

12A differencing assembly (DA) (Jarosik et al. 2003a) comprises two polarization sensitive radiometers. There are 1, 1, 2, 2, &
4 DAs in K through W bands repectively.
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2.2. Sidelobes

The distinction between the main beams and the sidelobes is at some level an arbitrary definition. The
structure that holds the feed horns scatters radiation into a large region around the main beams. In other
words, the main beam does not contain the total solid angle of the full sky beam (Table 7, Page et al.
(2003)). The fraction of the total solid angle outside � Rc is 0.037, 0.012, 0.012, 0.0022, and 0.001-0.003 in
K through W bands respectively. For example, in K band, the region with � � � Rc contains 99.8% of the
modeled main beam solid angle ( � B) but only 96.4% of the total solid angle ( � A).

The sidelobes have two effects on the interpretation of the data. The first arises from Galactic contami-
nation. As shown in Barnes et al. (2003), the sidelobe leakage affects primarily

� � 20 and is not significant
for Ka, Q, V, and W bands. The second arises from the sidelobe contribution to the calibration of features
at

���
20. For example, point sources are detected only in the main beam and the measured temperature

profile of a point source corresponds to only a main beam calibration. The dipole, however, is a full beam
calibrator. Thus, to obtain the true flux of a point source, to a good approximation one multiplies the flux as
calibrated by the dipole by 1.037, 1.012, 1.012, 1.002, and 1.003 in K through W bands respectively.

For the year-one release, only the K-band map is corrected for the Galactic sidelobe contribution.
However, all the point source fluxes in Bennett et al. (2003a) and Jupiter fluxes given below have been
corrected in all bands. The uncertainty of the correction is taken as half the correction factor, or 2%, 0.5%,
0.5%, 0.1%, and 0.2% in K through W bands respectively.

2.3. Effective Frequencies

Because of WMAP’s broad frequency bandwidth, sources with different spectra have different effective
frequencies. The effective frequency for a source that is small compared to the beam width (Page et al. 2003)
is:

� e �
� � f ( � )Gm( � ) � −2 	 ( � )d �
� f ( � )Gm( � ) � −2 	 ( � )d �

(2)

where f ( � ) is the measured radio frequency (RF) passband 13 and Gm( � ) is the maximum (forward) gain.
The spectral dependence of the source is 	 ( � ) � ��� with � the spectral index ( � � −0 � 7 for synchrotron, � �

−0 � 1 for free-free, � = 2 for Rayleigh-Jeans, and � � 4 for dust) or 	 ( � ) � � 4 exp(h � � kBTCMB) � (exp(h � � kBTCMB)−
1)2 for the CMB. (The variation of loss across the band is negligible.) For full beam sources, such as the
CMB or the calibrators used in ground testing, the small dependence on the forward gain should not be
included and the central frequencies in Jarosik et al. (2003a) should be used. At high

�
or for point sources,

the effective center frequency, and therefore the thermodynamic to Rayleigh-Jeans correction, changes. The
magnitude and sign of the change depend on the relative weights of the radiometer passbands and forward
gain. This small effect ( � 0 � 2 GHz or � 0 � 1%) in the conversion was not included in the year-one maps.

13Jarosik et al. (2003a) uses r( � ) where this paper and Page et al. (2003) use f ( � ).
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The passbands for the two polarizations in a DA differ slightly (Jarosik et al. 2003a). Thus, the two
polarizations for one telescope (e.g., A side) have different passbands. On the other hand, the optical gain as
a function of frequency is the same for both polarizations of one telescope but differs between the A and B
sides. In Table 3, for the CMB, we give the effective frequencies from equation 2 for the average of the two
RF passbands for the A and B sides separately. We also give the effective frequencies for both polarizations
separately (Table 11, Jarosik et al. (2003a) ) for a source that fills the beam. The table shows that the effect
of the optics on the passbands is small.

2.4. Temperature of Jupiter

The observations of Jupiter and the CMB dipole with WMAP result in a calibration of Jupiter calibrated
with respect to the CMB dipole. After coadding the data over polarization and season, a fit is made to
Jupiter’s temperature. Before the fit is done, a correction is applied. The loss in the input optics on the
A and B sides differs by � 1% (Table 3, Jarosik et al. (2003a)). Therefore, Jupiter and the CMB do not
have the same apparent temperature when measured through the A and B telescopes. The signature of
the effect is that the average of the A-side temperature data is offset from that of the B-side data. This
effect is accounted for in the year-one sky maps but not in the Jupiter maps. After the A/B imbalance,
sidelobe corrections, and the W-band pedestal correction, all measurements of TJ in one microwave band
are fit to a single temperature. We find that TJ , in brightness temperature, is given by 134 � 4, 146 � 6 � 2 � 0,
154 � 7 � 1 � 7, 163 � 8 � 1 � 5, 171 � 8 � 1 � 7 K in K through W bands respectively. The uncertainty is dominated
by the uncertainty in the solid angles, in the sidelobe corrections, and in the 0.5% intrinsic calibration
uncertainty (Hinshaw et al. 2003). These values are the temperature one would measure by comparing the
flux from Jupiter to that from blank sky. To obtain the absolute brightness temperature, one must add to
these the brightness temperature of the CMB (2.2 K, 2.0 K, 1.9 K, 1.5 K, and 1.1 K in K through W bands,
respectively). A future paper will compare this result to other measurements and assess the stability and
polarization characteristics more completely.

2.5. Physical Model of Beams

The dominant surface deformation that leads to the distortions of the main beams comes from the “H-
shaped” backing structure that holds the primary mirrors. A simple Fourier transform of the aperture with an
additive H-shaped distortion reproduces many of the features in Figure 1, but photogramatic pictures (Page
et al. 2003) of the cold surface indicate that the surface structure is more complicated. For the purposes of
the year-one analysis, the Gaussian distortion model is sufficient, but for future analyses a more accurate
model is desired.

The full beam is modeled using a physical optics code (DADRA, Rahmat-Samii et al. (1995)) that
predicts the beam profile given the detailed physical shape of the optics. The primary surface deformation is
parametrized with a set of Fourier modes the amplitudes of which are the fit coefficients. (In the pre-launch
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cryogenic tests, there was no evidence for a significant change in shape of the secondary.) A minimization
loop finds the surface shape parameters that simultaneously fit the two V-band and four W-band beam maps
of Jupiter.

The program is computationally intensive because the full physical optics calculation for all beams
is recomputed for each iteration. A qualitative comparison of the measured and modeled beam patterns is
shown in Figure 3 from which it is clear that the amplitude and phase of much of the surface deformation
has been identified. The program has not run long enough to converge in all bands, so it is not yet used in
the beam analysis. At this stage, though, the model gives us confidence that we are not missing significant
components of � B and that our interpretation of the beams is correct.

2.6. Temperature Stability and Reflector Emissivity

The WMAP orbit in the L2 environment results in extremely good thermal stability. The instrument has
an array of thermometers on the optical components with sub-millikelvin resolution (Jarosik et al. 2003b).
By binning the temperature data synchronously with the spin rate and the position of the Sun, we detect
a synchronous thermal variation in the optics. The top and middle of the primary have a peak-to-peak
amplitude of � 0 � 23 mK. We believe this is due to scattering of solar radiation off the rim of the solar array.
The tips of the secondary mirrors show a maximal variation of 0.04 mK peak-to-peak, with the rest of the
secondaries much less. There is no evidence for any thermal variation due to illumination by the Earth or
Moon. The 0.23 mK is well below the conservative bound of 1.5 mK in Page et al. (2003) and below the
0.5 mK rms requirement in the systematic error budget.

We bound the emissivity, � , of the reflectors using a similar method. After subtracting the CMB dipole
from the TOD, the radiometric signal is coadded in Sun-synchronous coordinates following the method
outlined in Jarosik et al. (2003b). The net spin synchronous radiometric signal detected is 0.4 � K peak-to-
peak (0.014 � K rms) in the combined W and V bands. Therefore, an upper bound on the emissivity of the
surface is 0.002. The predicted emissivity is 0 � 0005.

2.7. Polarization from Optics

Each DA measures two orthogonal differential polarizations from each pair of feeds (e.g., K11A and
K11B form one difference and K12A and K12B form the other difference). The Stokes Q and U components
are found by differencing these two signals in the time stream, determining the components relative to a fixed
direction on the sky, and then producing a map with the mapmaking algorithm (Kogut et al. 2003; Hinshaw
et al. 2003). WMAP was designed to have cross-polar leakage of � −22 dB in all bands (Page et al. 2003)
to enable a measurement of the polarization of the CMB. This specification was met and demonstrated in
pre-launch ground tests with a polarized source.

To assess the degree of the similarity of the two polarization channels, we take the A-side beam maps
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for both polarizations from one feed (e.g., KA11 (’P1’) and KA12 (’P2’)), difference them, integrate over
the difference map, and then divide by T � from Jupiter. The resulting fractional signal for the A side is
8.1%, 2.5%, 0.2%, 0.4%, -2.8%, -2.7%, 0.3%, 0.5%, 1.6%, and 0.9% in K1 through W4 bands. For the B
side it is 6.5%, -0.1%, -3.3%, 4.0%, 0.4%, 1.0%, -0.5%, -0.1%, 2.7%, -0.5%. The statistical uncertainty for
the difference in polarizations is � 1 � 2% and the measured rms of all Ka through W values is 1.8%. For a
polarized source, the sign of the difference changes when P1-P2 is determined on the A and B sides.

The difference between the beams (P1-P2) from the Jupiter maps is larger than expected but there
are no clear trends in Ka through W bands and no clear detections of polarization. For K band, there is a
clear excess at a level larger than can be attributed to the optics. As Jupiter is nearly a thermal source, the
difference is not due to a frequency mismatch (Kogut et al. 2003) between the dipole and Jupiter. However,
the difference in effective frequencies of 1.0 GHz (P1 and P2, Table 3) leads to a difference in solid angle
of order 10% (Table 5, Page et al. (2003)), enough to explain the effect. The net effect is smaller in the
higher frequency bands because of the low edge taper. For the year-one analysis, the slight difference in the
effective frequency for the bands is not corrected. Instead, the uncertainty is absorbed in the uncertainty of
the average solid angle.

The CMB is polarized at the � 5% level, in temperature units, and the temperature-polarization cor-
relation is at the � 15% level. The CMB polarization signal comes from scales larger than the size of the
beam and so no particular band mismatch affects the CMB polarization results. In addition, the CMB signal
is derived from the sum over multiple bands.

3. Calculation of window functions

The characteristics of the CMB are most frequently expressed as an angular spectrum of the form
l(l + 1)Cl � 2 � (Bond 1996) where Cl is the angular power spectrum of the temperature:

T (n) =
� �

� m
a

�
mY

�
m(n) ��� a �

���
m

�
a

�
m � = 	

� � �
	 m
�
mC

�
(3)

where n is a unit vector on the sphere and Y

�
m is a spherical harmonic.

The beam acts as a spatial low-pass filter on the angular variations in T (n) such that the variance of a
noiseless set of temperature measurements is given by

C(0) �
� � (2

�
+ 1)C

�
4 � w

�
(4)

where w

�
is the window function which encodes the beam smoothing. It is normalized to unity at

�
= 0 as

discussed below.

The window functions are expressed following the conventions of White & Srednicki (1995). The
window function depends on the mapping function M(n � n 
 ) which describes how the experiment convolves
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the true sky temperature T (n 
 ) into the observed temperature �T (n),

�T (n) =
�

d � n

�
M(n � n 
 )T (n 
 ) � (5)

For WMAP, M(n � n 
 ) for one feed is a weighted average of the beam response B(n � n 
 ) that accounts
for the smearing due to the finite arc scanned over an integration period and the azimuthal coverage of
the observations in each pixel. The symmetrized beam, BS, is an excellent approximation to the mapping
function.

The full window function is given by:

w

�
(n1 � n2) �

�
d � n

�
1

�
d � n

�
2
M(n1 � n 
1)M(n2 � n 
2)P

�
(n 
1 � n 
2)

=
4 �

(2
�

+ 1)

+

�
�
m=−

� �
d � n

�
1

�
d � n

�
2
M(n1 � n 
1) �

M(n2 � n 
2)Y �
�
m(n 
1)Y

�
m(n 
2) (6)

where P

�
is a Legendre polynomial. The primary quantity of interest is the window function at zero lag,

w

�
(n � n). In this case the total variance of the data, C(0), is the sum of the power in each spherical har-

monic weighted by the window. This is directly analogous to low-pass filtering. If the mapping function is
independent of celestial position, then

w

�
=

4 �
(2

�
+ 1)

+

�
�
m=−

������
�

d � n M(n � n)Y �
�
m(n)

����
2

(7)

=
4 �

(2
�

+ 1)

+

�
�
m=−

���
m

�
m

�
2 (8)

where the m

�
m are the harmonic coefficients of the mapping function.

If the beam is azimuthally symmetric, a further simplification can be made: � +

�
m=−

� �
m

�
m

�
2 = (2

�
+

1)b2
l � 4 � where b

�
is given by the Legendre transform of the beam

b

�
= 2 �

�
bS( � )P

�
(cos � )d(cos � ) ��� B � (9)

Thus w

�
= b2

�
. For symmetric beams, � is used instead of acos(n � n 
 ). For a symmetric Gaussian of width	

b, we find

B

�
� 2 � 	 2

be−

�
(

�
+1) � 2

b 	 2
= � Be−

�
(

�
+1) � 2

b 	 2 (10)

where B

�
is the Legendre transform with units of sr. Because the instrument is calibrated with a dipole

signal, the B

�
should be normalized at

�
= 1. In practice, this is indistinguishable from normalizing at

�
= 0.

Thus, b

�
= B

�
� B
�
=0 = B

�
��� B and is dimensionless.
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Although WMAP is intrinsically differential, there is essentially no overlap of the beams from opposite
sides, so the window functions from each beam may be treated independently and then combined in the end.
Thus, the window function for the differential signal is derived from the weighted symmetrized beam

bS( � ) =
� S

2 � (1 − xim)
�
bS � A

�
� A

B

+
(1 + xim)

�
bS � B

�
� B

B � (11)

where � A
B and � B

B are the main beam solid angles for the A and B side beams, � S is the effective solid angle
of the combined beam, and xim is � 0 � 01 and corrects for the A/B imbalance (Jarosik et al. 2003a) 14. We
use the absolute values to indicate that both beams are treated as positive in this equation. As before, the
superscript S denotes a symmetrized beam.

3.1. Window Functions and Their Uncertainties.

We compute the window function for the CMB analysis from bS using an expansion of the symmetrized
beam in Hermite polynomials. Hermite functions are a natural basis for the beam as they parametrize
deviations from Gaussanity. The expansion also naturally gives the covariance matrix for the B

�
as well.

The Hermite expansion is given by

bS( � ) = exp(− � 2 � 2 	 2
h)

mh�
i=0

a2iH2i( � � 	 h) (12)

where � is angular distance from the beam center, 	 h is the Gaussian width of the beam, and H2i is the Her-
mite polynomial of order 2n (Chapter 22, Abramowitz & Stegun (1972) ). The parameters of the expansion
are given in Table 4. A fit is made of the TOD to equation 12. From the fit, the mh coefficients a2i and the
mh � mh covariance matrix Caa

�
are found. The expansion coefficients, a2i, are normalized to account for the

measured temperature of Jupiter and the normalization of H2i.

The transfer function is computed separately for each Hermite polynomial following equation 9:

B

�
i = 2 �

�
exp(− � 2 � 2 	 2

h)H2i( � � 	 h)P

�
(cos � )d(cos � ) (13)

so that the full transfer function is

B

�
=

mh�
i=0

a2iB

�
i � (14)

The window functions based on equation 14 are shown in Figure 4. From equation 14, one can deter-
mine the covariance matrix between B

�
and B 


�
as:� B

� � �
=

mh�
i � j=0 � B

�

� a2i
Caa

�
i j � B

� �

� a2 j
=

mh�
i � j=0

B

�
iC

aa

�
i j B

� �
j � (15)

14The xim is the average of the values for the two polarizations.
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This matrix has units of sr2, is independent of Jupiter’s temperature, and is largest in magnitude at low
�
.

Because of the dipole calibration, there is effectively only calibration uncertainty at
�

= 1. This is
accommodated in the formalism by normalizing the beam covariance matrix at

�
= 0, b

�
= B

�
� B0, as shown

in Appendix A. We find � b

� ���
=

mh�
i � j=0 � b

�

� a2i
Caa

�
i j � b

���

� a2 j

=
1

( � S)2 � � B

� � �
+ b

�
b

� � � B
00 − b

� � B
0

� �
− b

� � � B

�
0 � � (16)

Equation 16 gives the formal statistical uncertainty in the transfer functions which is shown in Figure 5
for the ten DAs.

The solid angle is a scaling factor for the transfer functions, b

�
, and does not directly enter into the

uncertainty of the window function. However, the noise that leads to the uncertainty in � B also produces the
finite Caa

�
. In particular, the uncertainty in the

�
cutoff in the transfer function is manifest as the increased

uncertainties at large
�

in Figure 5. Because we found that the scatter in � B was larger than that predicted by
the noise by a factor of two in W band (§2.1 item 2), the statistical error bars from equation 16 are inflated
by a factor of two in all bands to account for current systematic uncertainties intrinsic to the Jupiter data.
This is shown in Figure 5.

3.2. Systematic Uncertainty in the Window Functions

The window functions depend on the treatment of the beams, sky coverage, and analysis method at the
few percent level. These systematic effects are included in the window function uncertainty.

To determine the effect of incomplete symmetrization, mapping functions M(n � n 
 ) are computed for
coverage corresponding to a pixel near the north ecliptic pole, which has the most symmetric coverage, and
for a pixel on the ecliptic, which has the least symmetric coverage. For each mapping function, the full
window function (equation 8) is computed and compared to b2

l computed from equation 14.

Figure 6 shows the departure of the full window function from the symmetrized window function as a
function of

�
. For all CMB analyses, the symmetric beam assumption is accurate to 1% for all

�
except for

300 � � � 400 in Q band. In this range, the instrument noise is significantly larger than the beam uncertainty.
The uncertainty in the symmetrization is included in the year-one analysis to the extent that it is accounted
for in the uncertainties shown in Figure 5.

In addition to the Hermite-based method, The transfer functions are computed from the Jupiter maps (
using equation 9 ) as well as from a direct transform of the binned TOD (using equation 8). These transforms
weight the data differently, and less naturally, than do the Hermite expansion and are thus considered as
checks. The difference between the transform methods is shown in Figure 5. As the 1 	 error at each

�
, we

adopt the maximum departure from zero of the two alternative transforms or twice the formal uncertainty
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derived from Caa

�
. This error bound is shown as the outer envelope in Figure 5 and is propagated through

all other analyses.

In §2.1, it was shown that the choice of � Rc leads to a possible systematic bias in the determination
of the total beam solid angle in W band. The Jupiter-based window functions were computed with the
extended � Rc (§2.1, item 3) and were found to differ from the baseline window functions by at most 0.3%
for

� � � w=0 � 1. This demonstrates that � 1% effects in Jupiter maps can be negligible in
�
-space.

4. Beam Parameters for Coadded Data Sets

Most analyses are performed on maps that have been coadded by polarization or frequency (Bennett
et al. 2003b; Hinshaw et al. 2003). Table 5 gives the effective solid angles, gains and frequencies for two
map combinations. The effective solid angle here is computed with equation 11, so it does not include the
2 � 4 
 Jupiter pixelization. These values should be used for data analyses of the sky maps.

The conversion from flux in Janskys (10−26 Wm−2Hz−1) to antenna temperature depends on the beam.
The flux is modeled as F� � ( � ��� e) � . For a broad band receiver for which the gain is known at all frequen-
cies, the conversion factor is:

� bb =
(c2 � 8 � kB � 2

e ) � f ( � )Gm( � )( � ��� e) � −2d �

� f ( � )d �
(17)

where Gm is the maximum gain, f ( � ) is the radiometer band pass, and kB is Boltzmann’s constant. The “bb”
superscript indicates that this is a broad band quantity computed from a model of the optics.

For WMAP we report an effective conversion factor of
�

= c2 � (2kB � S( � f f
e )2) for sources with � =

−0 � 1. Here, � B is computed from the Hermite beam profiles and � f f
e is the effective frequency for free-free

emission. The fractional uncertainty is the same as for � S. The factors are tabulated in Table 5.

5. Conclusions

We have presented the characteristics of the beams in both real space and in
�
-space and assessed the

uncertainties in both domains. In K, Ka, Q, V, and W bands the uncertainties in the beam solid angles are
given by 2.6%, 1.2%, 1.2%, 1.1%, and 2.1%. The uncertainties in the window functions are typically 3% at
most values of

�
. These values include systematic effects.

We have also presented the formalism in which the beam uncertainties are propagated throughout
the analysis. The uncertainties which we adopt are conservative though prudent for this stage of the data
analysis.

The K-band sidelobe and W-band pedestal corrections are the only beam-related effects that are added
in “by hand” and not treated in the formalism. These effects are significant for real space analyses and are
currently negligible for the

�
−space CMB analyses.
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Jupiter is mapped approximately twice per year. With more data and improved modeling, our knowl-
edge of the beams and window functions will improve over the length of the mission.

The Jupiter maps and window functions are available on-line through the LAMBDA web site at
http://lambda.gsfc.nasa.gov/.

We thank Mike Nolta for useful discussions throughout the preparation of this paper. Consultations
with YRS Associates (rahmat@ucla.edu) and their DADRA code have played a central role in the develop-
ment and assessment of the WMAP optics. Ken Hersey led the beam mapping effort at NASA/GSFC in
addition to working on the beam predictions. Our ability to test the beam model is rooted in his work. Cliff
Jackson at NASA/GSFC guided the WMAP thermal reflector system through all phases of development.
The success of the WMAP optical system is largely the result of his tremendous efforts. We are also grateful
for the dedicated work of many engineers and technicians who made WMAP a reality.

6. Appendix A

The covariance matrix of the normalized beam is given by� b

� � �
=

mh�
i � j=0 � b

�

� a2i
Caa

�
i j � b

� �

� a2 j
(18)

where

b

�
=

B

�
B0

=
� k a2kB

�
k� k a2kB0k

(19)

and

� b

�

� a2i
=

Bi

�
� k a2kB0k

−
� k a2kB

�
k

( � k a2kB0k)2 B0i � (20)

With the real space beam normalized to unity at � = 0, � k a2kB0k = � S. After plugging equation 18 into
equation 20 there are four terms similar in form to

� k a2kB

�
k

( � k a2kB0k)2 B0iC
aa

�
i j

� j a2kB

� �
k

( � k a2kB0

�
k)2 B0

�
j =

b

�
b

� � �
00

( � S)2 � (21)

After working through the the other terms, we find equation 16.
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Table 1. Selected WMAP beam analysis notation

Symbol(s) Description

T m
J Measured amplitude of Jupiter

TJ Brightness temperature of Jupiter

� re f
J Reference solid angle of Jupiter

� B Generic main beam solid angle
� A

B & � B
B Main beam solid angle for A and B sides

� S Generic sidelobe solid angle
� A Antenna solid angle, � A = � B + � S

� S Effective solid angle of symmetrized A and B beams combined
bT ( � ) Full sky beam profile normalized with � bd � = � A

bS( � ) Normalized and symmetrized beam profile
b

�
Beam transfer function normalized to unity at

�
= 0� b

�
�

� �
Beam covariance matrix for b

�
B( � ) Beam profile normalized with � Bd � = 1
B

�
Beam transfer function of B( � )� B

�
�

� �
Beam covariance matrix for B

�
w

�
Window function normalized to unity at

�
= 0

Note. — Throughout this paper, small letters (e.g., b � b
�
) are used to denote

dimensionless quantities normalized at � = 0 or
�

= 0, and capital letters (e.g.,
B � B

�
) are used to denote quantities normalized with � B. The term “transfer

function” refers to the Hermite or Legendre transform of a beam. The term
“window function” is reserved for the square of the transfer function.
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Table 2. Main Beam Forward Gain Budget

Gain K Ka Q V W1 & W4 W2 & W3

Maximum optical design gain (dBi) 47.1 49.8 51.7 55.5 58.6 59.3

e−k2 � 2
z 0.99 0.97 0.95 0.90 0.78 0.78

After scattering (dBi) 47.0 49.7 51.5 55.1 57.5 58.2
After sampling (dBi) 47.0 49.6 51.4 54.9 57.3 57.9

Measured in flight (dBi) 47.3 49.4 51.4 54.6 57.7 57.6

Note. — The forward gain budget for representative beams. The first row gives the as-designed
forward gain that would be achieved with a stationary satellite with ideal reflectors. The next line
gives the gain reduction factor from the Ruze formula (Ruze (1966), k is the wave vector, �

z is given
in the text). The scattering reduces the gain to the values given in the line labeled “after scattering.”
The finite integration time for each data sample results in a slight smearing of the beam, reducing it
to the values in the line labeled “after sampling.” For reference, 1% corresponds to 0.043 dB.
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Table 3. Main Beam Solid Angles, Gains, & Effective Frequencies

Beam
�

B Gm � sync
e � f f

e � cmb
e P1 � cmb

e P2 � cmb
e � RJ

e � dust
e

(sr) (dBi) (GHz) (GHz) (GHz) (GHz) (GHz) (GHz) (GHz)

K1A 2 � 44 � 10−4 47.1 22.42 22.50 22.76 22.36 23.18 22.77 22.95
K1B 2 � 36 � 10−4 47.3 22.47 22.55 22.80 22.80 22.98
Ka1A 1 � 43 � 10−4 49.4 32.67 32.74 32.98 32.84 33.19 32.99 33.17
Ka1B 1 � 45 � 10−4 49.4 32.61 32.68 32.92 32.93 33.10
Q1A 0 � 869 � 10−4 51.6 40.54 40.64 40.97 40.96 40.79 40.88 41.18
Q1B 0 � 903 � 10−4 51.4 40.58 40.67 40.94 40.99 41.20
Q2A 0 � 911 � 10−4 51.4 40.48 40.56 40.83 40.84 40.23 40.99 41.03
Q2B 0 � 895 � 10−4 51.5 40.43 40.51 40.79 40.80 40.99
V1A 0 � 405 � 10−4 54.9 60.24 60.40 60.91 59.32 61.22 60.96 61.36
V1B 0 � 439 � 10−4 54.6 60.22 60.38 60.90 60.95 61.35
V2A 0 � 426 � 10−4 54.7 60.95 61.10 61.58 61.72 60.75 61.63 62.00
V2B 0 � 421 � 10−4 54.7 60.93 61.09 61.57 61.62 62.00
W1A 0 � 196 � 10−4 58.0 92.85 93.08 93.72 93.71 93.27 93.89 94.47
W1B 0 � 213 � 10−4 57.7 92.74 92.97 93.61 93.78 94.37
W2A 0 � 214 � 10−4 57.7 93.33 93.50 93.97 93.58 94.35 94.10 94.54
W2B 0 � 233 � 10−4 57.3 93.38 93.55 93.04 94.17 94.61
W3A 0 � 205 � 10−4 57.9 92.42 92.58 92.03 92.44 93.39 93.15 93.57
W3B 0 � 235 � 10−4 57.3 92.45 92.61 93.07 93.19 93.63
W4A 0 � 203 � 10−4 57.9 93.25 93.45 94.01 94.33 93.18 94.17 94.68
W4B 0 � 213 � 10−4 57.7 93.19 93.39 93.96 94.11 94.63

Note. — The
�

B are derived from the Jupiter maps and include the smearing from the 2 � 4 � pixelization.
These solid angles should be used for working with the Jupiter maps. The forward gain is Gm = 4 ��� � B. The
effective frequencies are for sources smaller than the beam size (except for entries P1 and P2). For diffuse
sources such as the CMB anisotropy, one should use the tabulation in Jarosik et al. (2003a). The columns with
the P1 and P2 labels are for the two polarizations and come directly from Table 11 in Jarosik et al. (2003a).
They are the same for the A and B sides. By comparing P1 and P2 with � cmb

e from the previous column, one can
assess the effects of the optical gain on the passband. The 1 � uncertainty on the effective frequency is 0 � 1 GHz
though the values are given to 0.01 GHz so the trends may be assessed.
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Table 4. Transfer Function and Window Function
Parameters

K Ka Q V W14 W23

mh 10 30 30 50/70 70 70
�

h (deg) 0.348 0.268 0.210 0.139 0.089 0.088
� w � =0 � 5 128 163 200 265 300 260
� w � =0 � 1 240 320 400 580 840 700

Note. — Parameters used in the beam fits and their assessment.
The number of terms in the Hermite expansion is given by mh and
the Gaussian width for the expansion are given by �

h. The
�

value
for which the normalized window is 0.5 is

� w � =0 � 5 and similarly for
� w � =0 � 1.
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Table 5. Main Beam Solid Angles, Gains,
�

, and Effective
Frequencies for Combined Maps

Beam
� S �

FWHM Gm � � cmb
e

(sr) (deg) (dBi) ( � K/Jy) (GHz)

For 10 maps

K 2 � 39 � 10−4 0.82 47.2 268 22.8
Ka 1 � 43 � 10−4 0.62 49.4 213 33.0
Q1 0 � 879 � 10−4 0.48 51.6 224 40.9
Q2 0 � 900 � 10−4 0.48 51.4 220 40.5
V1 0 � 418 � 10−4 0.33 54.8 214 60.3
V2 0 � 416 � 10−4 0.33 54.8 210 61.2
W1 0 � 199 � 10−4 0.21 58.0 190 93.5
W2 0 � 215 � 10−4 0.20 57.7 173 94.0
W3 0 � 213 � 10−4 0.20 57.7 179 92.9
W4 0 � 202 � 10−4 0.21 57.9 185 93.8

For 5 maps

K 2 � 39 � 10−4 0.82 47.2 269 22.8
Ka 1 � 43 � 10−4 0.62 49.4 213 33.0
Q 0 � 889 � 10−4 0.49 51.5 222 40.7
V 0 � 417 � 10−4 0.33 54.8 212 60.8
W 0 � 206 � 10−4 0.21 57.8 182 93.5

Note. — The values for � cmb
e are the average of the values in one band

as given by Jarosik et al. (2003a). They are appropriate for the CMB
anisotropy. The top ten entries are for the ten maps in which the two po-
larizations have been combined. The bottom five are for the maps com-
bined by polarization and band. A useful characteristic beam resolution
is the full width at half the beam maximum, �

FWHM, though the beams
are not Gaussian. The values for � are for a source with a free-free spec-
trum. The K-band value is appropriate for the sidelobe corrected map
described in Hinshaw et al. (2003). For year-one analyses using

� S and

� , we recommend uncertainties of 2.6%, 1.2%, 1.2%, 1.1%, and 2.1% in
K through W band respectively.
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Fig. 1.— Jupiter maps of the A and B side focal planes (Bennett et al. 2003c) in the reference frame of the
observatory. The contour levels are at 0.9, 0.6, 0.3, 0.09, 0.06, 0.03 of the peak value. W1 and W4 are the
“upper” W-band radiometers. In W band, the lobes at the 0.09 contour level ( � −10 dB) and lower are due
to surface deformations.
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Fig. 2.— Left: The symmetrized beams (normalized at unity) and noise levels (below) from two seasons of
Jupiter observations. Both polarizations have been combined. The noise rises at small radii because there
are fewer pixels over which to average. With four years of observations, the noise level will be reduced by
a factor of two. Right: The K (black) and W3 (grey) symmetrized beam profiles with their associated Ruze
patterns (§2.1). The noise level is at 20 dBi in all bands as seen in the plot (missing data corresponds to
negative values). The maximum optical gains are 47.1 and 59.3 dBi in K and W bands as indicated by the
horizontal lines. Table 1 shows the gain budget. The dashed lines are the Ruze patterns assuming a Gaussian
shaped distortion with the parameters in the text. The lighter shaded dotted lines that meet the dashed lines
at � = 0 are for a tophat shaped distortion. In W band, the tophat prediction, which has a prominent lobe
at � = 2 � � 5 clearly does not fit the data. Plots for W14 show the Ruze pattern to be above the beam profile
for � � 1 � suggesting the magnitude of the deformations is not greater than those we use. However, some
fraction of � B could be at or near the noise level for 1 � � 5 � � � 2 � � 0. The vertical straight lines indicate the
cutoff radii, � Rc, for the Gaussian distortion model.
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Fig. 3.— Left: A mosaic of the A-side W and V-band measured beams. One should focus on the main
beams areas. Different noise levels in the constituent mosaics lead to apparent artifacts away from the beam
centers. Right: Model of the A-side beams based on the physical optics calculations described in the text.
The same surface is used for all beams. Most of the features in the measured beams are reproduced in the
model indicating that the source of the distortions has been identified. The noise from the measurement has
been added to model on the right to make the comparison more direct. The separation between different
W-band beams is 1 � � 1, less than the cutoff radius for the determining the W-band solid angles.
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Fig. 4.— The ten window functions, w

�
, computed from the Hermite expansion. The window functions for

the two polarizations in each feed are nearly indistinguishable at the resolution of the plot.
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Fig. 5.— The transfer functions and their statistical and systematic uncertainty. The y axis of each panel
shows the fractional uncertainty. The green curve is the statistical uncertainty in the Hermite-based transfer
function. The orange curve corresponds to twice the statistical uncertainty (it is mostly hidden by the black
curve). The red curve is the fractional difference between the bl computed from the spherical harmonic
decomposition of the time stream and the Hermite fit. The blue line is the fractional difference between the
bl derived from the Juipter maps, after dividing by the 2 � 4 
 pixelization window function, and the Hermite-
based transfer function. The black curve is the adopted 1 	 uncertainty used in all analyses. It corresponds to
the absolute value of the maximum deviation from zero of the red, blue, and orange curves. The uncertainties
on the window function, w

�
, are twice these, but average down when multiple channels are combined. The

uncertainty at
�

= 1 is small because we calibrate on the CMB dipole. The uncertainty in � B is manifest at
high

�
.
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Fig. 6.— A comparison of the window function of a fully symmetrized beam (characteristic of pixels near
the ecliptic poles), to the window function of a beam with only partial symmetrization (characteristic of
pixels near the ecliptic equator). The solid line is for Q band, the dash line is for V band, and the dot-dashed
line is for W band. The vertical lines indicate where the window functions drop to 0.1 of their value at

�
= 0.


